The Weibull Distribution#
-
gsl_ran_weibull(a, b)#
This function returns a random variate from the Weibull distribution. The distribution function is,
\[p(x) dx = {b \over a^b} x^{b-1} \exp(-(x/a)^b) dx\]for \(x \geq 0\).
-
gsl_ran_weibull_pdf(x, a, b)#
This function computes the probability density \(p(x)\) at \(x\) for a Weibull distribution with scale
a
and exponentb
, using the formula given above.
-
gsl_cdf_weibull_P(x, a, b)#
-
gsl_cdf_weibull_Q(x, a, b)#
-
gsl_cdf_weibull_Pinv(P, a, b)#
-
gsl_cdf_weibull_Qinv(Q, a, b)#
These functions compute the cumulative distribution functions \(P(x), Q(x)\) and their inverses for the Weibull distribution with scale
a
and exponentb
.